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Abstract: Recent research on whole slide imaging (WSI) has greatly promoted the development
of digital pathology. However, accurate autofocusing is still the main challenge for WSI acquisition
and automated digital microscope. To address this problem, this paper describes a low cost
WSI system and proposes a fast, robust autofocusing method based on deep learning. We use
a programmable LED array for sample illumination. Before the brightfield image acquisition,
we turn on a red and a green LED, and capture a color-multiplexed image, which is fed into a
neural network for defocus distance estimation. After the focus tracking process, we employ a
low-cost DIY adaptor to digitally adjust the photographic lens instead of the mechanical stage to
perform axial position adjustment, and acquire the in-focus image under brightfield illumination.
To ensure the calculation speed and image quality, we build a network model based on a ‘light
weight’ backbone network architecture-MobileNetV3. Since the color-multiplexed coherent
illuminated images contain abundant information about the defocus orientation, the proposed
method enables high performance of autofocusing. Experimental results show that the proposed
method can accurately predict the defocus distance of various types of samples and has good
generalization ability for new types of samples. In the case of using GPU, the processing time for
autofocusing is less than 0.1 second for each field of view, indicating that our method can further
speed up the acquisition of whole slide images.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Whole slide imaging (WSI) aims to get the digital representation of pathology slides containing
tissue specimen, which are originally observed by a pathologist through a microscope, time
consumingly and workload intensively. The concept of WSI was first developed based on a
robotic microscope in late 1990s [1] by Ferreira and Joel Saltz, who designed a software system
to indicate the research and development ideas of WSI. Due to the rapid expansion of artificial
intelligence in recent years, digital pathology has ushered in a period of rapid development.
Simultaneously, research on WSI has received more attention. A landmark is that U.S. Food and
Drug Administration approved the whole slide imaging system designed by Philips for digital
diagnostic aids in 2017.

In order to acquire the high spatial resolution digital images, a high numerical aperture (NA)
objective lens is usually employed in WSI systems. Under the same magnification of objective
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lens, larger NA means smaller depth of field (DOF). However, the small DOF of objective lens
poses a great challenge to focus accurately in a new field of view (FoV) during the scanning
process. Thus, autofocusing is a critical step in WSI acquisition. In previous WSI settings,
autofocusing methods can be mainly categorized into three groups: 1) pre-scan focus map
approach, 2) real-time reflective autofocusing, and 3) real-time image-based autofocusing [2].

In traditional WSI settings, a z-stack, corresponding to the tissue images at different focal
planes is acquired for each FoV, which is time consuming and storage intensive [1]. A figure of
merit is then applied to the images of stack to figure out which image is acquired in the best focal
plane. Focus map with Delaunay triangulation algorithm, which determines the focal plane on
FoVs discretely distributed and interpolates the rest, is applied to reduce the time consumption in
acquiring z stacks by reducing the number of acquisition points [3]. Yazdanfar et al. proposed an
empirical fitting model that applies a Lorentzian function for Brenner gradient focus measure to
minimize the number of images having to acquire within a stack. Applying this model, only 3
images are needed to calculate the best focal plane [4].

Some researches focus on the implementation of reflective-based autofocusing. In 2006,
Y.Liron illustrated a laser based autofocusing method with confocal pinhole setup [5]. A two-stage
search algorithm is introduced to determine the precise focal plane. Although this method can
perform precise autofocusing, axial scanning is still needed to calculate the trace curve. G.
Reinheimer et al. proposed triangulation concept for microscopy illumination, which projects
the illumination light to the sample with an incident angle and measures the lateral displacement
of the reflected beam [6].

Recently, real-time autofocusing has been used in WSI platforms by adding additional
components. R. R. Mckay and M. C. Montalto proposed independent dual sensor scanning
system for real-time autofocusing in 2011 [3]. During image acquisition, while the imaging
camera reading out the high-resolution image of the previous FoV, the sample moves as well
as the autofocusing sensor acquires three images at different focal planes to calculate the focus
position of the next FoV. Dong et al. proposed to acquire the best focal plane through a tilted
sensor in 2005 [7]. Imaging on tilted focusing sensor is non-uniform defocused and the defocus
distance can be inferred from the pixels between the parfocal point and the highest-contrast
point. A. Kinba et al. described the phase detection autofocusing method, which divides the
incoming light into two parts and calculates the pixel shift to infer the defocus distance [8].
Zheng et al. proposed real-time autofocusing approaches based on phase detection [9,10] and
dual-LED illumination [11–15], which allows continuous sample motion during autofocusing
image acquisition. In addition, an OpenWSI system proposed in [15] uses only one sensor for
both focusing and image acquisition, which reduces the hardware costs.

Recently, with the rapid development of artificial intelligence, quantities researches applied
deep learning for focal plane detection. Jiang et al. applied Resnet based convolutional neural
network to predict the defocus distance through the transform and multi-domain inputs [16].
Experimental results of [16] show that using brightfield images as inputs of network brings
large focusing errors. Especially when facing with pathological slides from different vendor, the
mean focusing error can be 2.4 times of DOF, indicating that using brightfield images as input
to infer defocus distance has poor generalization ability. Inspired by this, in this paper, we use
partial coherent illumination images as input. In this case, both the defocus direction and defocus
distance are encoded in the relative position of red and green channels, which contributes to
higher robustness and generalization ability. In addition, Dastidar et al. employed the difference
of two defocused images as the input of a CNN network, defocus distance as the output [17].
However, the preprocessing of the previous two approaches may introduce additional time to
the defocus distance prediction. Pinkard et al. proposed a method to set an additional off-axial
LED as the illumination source, and feed the acquired images to a fully connected Fourier neural
network to predict the defocus distance [18]. This method has a larger working distance and a
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faster prediction speed, but the focusing error is relative higher when dealing with new sample
types. Another application of deep learning in WSI field is to virtually refocus blurry out-of-focus
images into in-focus images. Wu et al. trained a deep neural network to virtually refocus a
two-dimensional fluorescence image onto user-defined three-dimensional(3D) surfaces within
the sample [19]. Y. Luo and A. Ozcan proposed the deep-learning based offline autofocusing
network, termed Deep R to rapidly and blindly autofocus a microscopy image [20].

This paper described a low cost WSI platform and proposed a robust single-shot autofocusing
method, which utilizes the deep learning to estimate the defocus distance. We build the model
based on a ‘light weight’ backbone network architecture-MobileNetV3. The key contributions of
this paper are:

• We reported a low-cost WSI scheme based on a photographic lens instead of the tube lens
and a programmable LED array for sample illumination. We employ a customized Canon
EF mount to industrial camera C mount adapter ring to provide a low-cost solution for
subsequent research on photographic lens focusing adjustment.

• We propose the use of deep learning to estimate the defocus distance based on partially
coherent illumination images with accurate single-shot autofocusing. In addition, the
proposed ‘light weight’ model can maintain fast computing speed even when used in
embedded devices.

• The experimental results show that the proposed method has good robustness for under-
stained and thick samples and generalization for new sample types, and the processing
time for focusing position estimation is less than 0.1s.

This paper is organized as follows: in section 2, we introduce the employed low-cost WSI system
and the deep learning method for autofocusing. In section 3, we present the experimental results
on various kinds of samples. Finally, we conclude the paper in section 4.

2. Low-cost WSI based on color-multiplexed illumination and deep learning

2.1. Hardware platform

Figure 1(a) shows the low-cost WSI platform, which is composed of three parts: the imaging
system, the illumination system, and the electronically controlled translation system. In the
imaging system, we use a 20-megapixel color camera (ImageSource DFK 33UX183, 2.4 µm
pixel size) to acquire the digital images. An Olympus objective lens (20X, 0.5NA) and a
photographic lens (Canon EF 100mm f2.8L Macro IS USM) are used in the proposed microscopy
system. We use a programmable LED array (Adafruit DotStar High Density 8× 8 Grid) as the
illumination source. Each LED is individually addressable and drivable based on the embedded
microcontroller which allows us to switch between the incoherent illumination and partial
coherent illumination. On the basis of conventional microscopy system, we only need to replace
the illumination equipment, which is composed of LED array, customized diffuser and heat
dissipation module, to achieve focusing tracking with the proposed method. It is convenient to
apply our method on conventional microscopy system.

Figure 1(b1) shows the schematic diagram of the system when a red and a green LEDs are
turned on and illuminate the sample from two opposite incident angles. Under this illumination
mode, the acquired color image is shown in Fig. 1(b2). If the sample is placed at a defocus
position, there will be an interval between the red channel and green channel of the image, which
contains the information of defocus distance. For a certain defocus distance, a larger illumination
angle between the red and green LED indicates a larger displacement between the red and green
channel of Fig. 1(b2), while a smaller illumination angle leads to a smaller translational shift [21].
Based on the translational shift, defocus distance can be figured out. After the focus tracking
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Fig. 1. (a) Low-cost whole slide imaging platform. (b) Schematic diagram of the platform
with color-multiplexed illumination by turning on a pair of red and green LEDs. (c)
Schematic diagram of the system with incoherent illumination by turning on all LEDs. (d)
Customized lens adapter compatible for EF-mount Canon lens to C-mount industrial camera
(e) The measured calibration curve between lens ring position and axial defocus distance of
the sample.

process, we switch the LED array to incoherent illumination mode by turning on all LEDs as
shown in Fig. 1(c1) and acquire a brightfield image as shown in Fig. 1(c2). For the initial state
of the acquisition process, we turn on two green LEDs to illuminate the sample from opposite
incident angles and capture two images, respectively. Then the pixel shift between these two
images, which is used to estimate the focal plane of the first FoV, can be calculated by locating
the maximum point of the cross-correlation plot.

We customized an adapter ring, as is shown in Fig. 1(d) for EF-mount photographic lens to
C-mount industrial camera. The main task of making the adapter ring is to install pogopins on
appropriate positions of a commercially available EF-C adapter, which is made of aluminum
alloy and has no contacts integrated inside, to lead out the control wirings. We install a Canon
550D camera-body-side contact module to the adapter ring to achieve this, which is a simpler
solution. The OpenWSI system controls the photographic lens by opening the lens and leads out
the control wiring from the inside [15]. This intrusive method will cause damage to the lens and
may affect the use of the lens in other experiments. The adapter ring we designed can avoid this
problem elegantly, and allows us to perform precise axial positioning control at a low cost. We
use the Serial Peripheral Interface (SPI) of the Arduino microcontroller to simulate the Canon
camera body sending control commands. Thus, the ultrasonic motor ring inside the lens can
be controlled to turn to different positions. The measured calibration curve between the lens
ring position and the axial defocus distance of the sample is shown in Fig. 1(e). The slope of
the curve shows that in our setting, objective lens moving along z axis for 1 µm corresponds to
ultrasonic motor adjusting 15.7 lens ring position.

The main principles of the illumination system are shown in Fig. 2. A diffuser is placed
between the LED array and the sample to provide incoherent illumination. Two holes are required
at the diffuser plane for partial coherent illumination during color-multiplexed image acquisition.
The schematic diagram of the illumination system is shown in Fig. 2(a). According to the
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geometric relations, the position of the hole x1 is given as:

x1 =
d1 · x2
d1 + d2

(1)

where d1 is the distance between the sample and the diffuser, d2 is the distance between the
diffuser and the LED array, and x2 is half the distance between the red and green LEDs. x2,
d1 and d2 can be measured directly and the positions of the holes on the diffuser can also be
determined. Under partial coherent illumination, there is a linear relationship between the defocus
distance and the pixel shift, as shown in Fig. 2(b) and Eq. (2),

p =
D · z

H · psize
(2)

where D is the distance between the red and green LEDs. H is the distance between the LED
array and the pathological slide. z represents the defocus distance. p represents the pixel shift
and psize represents the pixel size.

Fig. 2. (a) Schematic diagram of the illumination system. (b) Relationship between defocus
distance and pixel shift.

Under color-multiplexed illumination, the relative position between the red channel and the
green channel relates to the defocus direction, as shown in Fig. 3. The red channel is on the left
of the green channel when defocusing in the negative direction and the red channel is on the right
of the green channel when defocusing in the positive direction. The accuracy of the defocus
direction judgement is one of the advantages of our system, which will be described in section 3.
There is a clear and direct relationship between the translational shift and defocus distance. As
the defocus distance increases, the translational shift between the red and green channels also
increases. Compared with extracting defocus distance through brightfield images, there is a more
direct relationship between translational shift and the defocus distance, which is more conductive
to figure out the defocus distance accurately.

Real time autofocusing can be realized in the case of using the programmable LED array and
drivable photographic lens. When the sample moves to a new FoV, the red and green LEDs are
turned on to provide color-multiplexed illumination and the captured image is used to figure
out the defocus distance. Then the LED array switches to provide incoherent illumination and
in-focus brightfield image is acquired after the photographic lens adjusting focal plane to the
target position.

2.2. Calibration

We employ a low-cost manual stage for coarse axial adjustment when changing different
samples, and perform precise autofocusing via adjustment of the ultrasonic motor ring inside the
photographic lens. The calibration curve between the lens ring position and the z-axis position
of the objective lens, as shown in Fig. 1(e), is measured by manually adjusting the objective lens
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Fig. 3. Relative relationship between the red and the green channel under color-multiplexed
illumination at different defocus distance.

to different positions, for which we find the adjustment of the lens ring position. The positioning
accuracy of the manual stage reaches 10 µm, which can meet the experimental requirements.
We can see that the lens ring position adjustments are in good agreement in a linear relationship
with the z-axis positions of objective lens. The slope of the curve manifests that in our setting,
objective lens moving along z axis for 1 µm equals to ultrasonic motor adjusting 15.7 lens ring
position. We achieve precise focal plane adjustment at a low cost by digitally adjusting the motor
ring instead of using an expensive mechanical stage. A two-dimensional electronically driven
stage is employed to enable lateral scanning of the pathological slides. Slide holder is mounted on
the stage so that we can move the pathological slides to align the objective lens to different FoVs.

Figure 4(a) shows the Brenner gradient of the image stacks acquired by adjusting lens ring
position when objective lens is set at different z-axis positions. Brenner gradient is a measurement
of average change in gray level between pairs of point separated by two pixels, which was
proposed in 1976 by J. F. Brenner [22]. The Brenner gradient is acutely sensitive to focus,
monotonically decreasing and symmetric about the peak. The Brenner gradient of a gray scale
image is shown in Eq. (3)

Brenner(s) =
M−2∑︂
m=1

N∑︂
n=1

(s(m, n) − s(m + 2, n))2 (3)

where m and n are pixel indexes of images. We first covert the acquired color images into
grayscale images, and then calculate the Brenner gradient by Eq. (3).

The extreme point of each curve represents the lens ring position which is best in focus. We
mount the objective lens on a low-cost manual stage, so the objective lens can move along z-axis.
In Fig. 4(a), for each curve, the objective lens has a displacement of 10 µm. Brightfield images
on different focal planes are shown in Fig. 4(b). Image taken closer to the best focal plane have
a larger Brenner gradient. Using the relative position of the objective lens on z axis as the
horizontal axis and the lens ring position of the extreme point as the vertical axis, the image
shown in Fig. 1(e) can be obtained. Through the relationship between the z-axis position of the
objective lens and the lens ring position, the proportional relationship between photographic lens
adjustment and z-axis adjustment can be determined.

2.3. Deep learning based autofocusing method

To ensure the calculation speed and image quality, we proposed a deep learning based autofocusing
method. We build our network based on MobileNetV3 [23] architecture, which is the new
generation of MobileNets published by Google AI. This “light weight” architecture enables high
inference efficiency and low computing resources, which maintains fast speed on terminal devices.
MobileNetV3 introduces light-weight attention modules based on squeeze and excitation into the
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Fig. 4. (a) Brenner gradient of image stacks acquired by adjusting lens ring position when
the objective lens is placed at different z-axis positions. For adjacent curves, interval of the
objective lens in the z-axis equals 10 µm. (b) Brightfield images of different focal planes
obtained by adjusting the ultrasonic motor ring inside the photographic lens.

bottleneck structure compared with MobileNetV2 [24]. Layers also are upgraded with modified
swish nonlinearities.

The network structure used in this paper is shown in Fig. 5. The network is composed of
three kinds of blocks, namely Squeeze and Excitation (SE) block, Inverted Residual block (IRB)
and the block composed of the above two structures (SEIRB). The ‘DW Conv’ in Fig. 5 means
Depth-wise convolution, which use each filter channel only at one input channel. Combined
with the following ‘1 × 1 Conv’, Depth-wise separable Convolution uses fewer parameters to
achieve the same effect of normal convolution and to reduce the computational cost. The ‘SE
Module’ means ‘Squeeze-and-Excitation’ architectural unit. The ‘SE’ module improves the
representational power of a network by enabling it to perform dynamic channel-wise recalibration
[25]. In ‘SE Module’, each channel is first ‘squeezed’ into a numeric value and then reduced by
a ratio through a dense layer. Afterwards, weights of each channel are given by another dense
layer, and input channels of ‘SE Module’ are weighted by the weights finally, which is called
‘Excitation’.

In our application scenario, the defocus distance is related to the translational shift between
channels. SE module applied in the network is able to extract the useful information between
channels, which helps to improve the accuracy. The small parameter size of the network enables
fast computational speed and availability in embedded devices. The proposed network also
provides the best performance among the networks we tested.

For image data preparation, both incoherent illumination focal stacks and partial coherent
illumination focal stacks are collected. We capture image stacks within a defocus range of ±160
lens ring position, which is equivalent to ±10 µm. In data acquisition process, we collect z-stacks
by commanding ultrasonic ring to 33 different defocus positions in the range between -160 lens
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Fig. 5. Network structure. ‘SE Module’: Squeeze and Excitation. ‘DW Conv’: Depth-wise
convolution. The input for the network is the red and green channels of color-multiplexed
image. The output of the network is the defocus distance.

ring position to +160 lens ring position with a 10 lens ring position step size, approximately
0.637 µm step size. We acquire a brightfield image and a partial coherent illumination image at
every focal position. In this way, an incoherent illumination stack, as shown in Fig. 6(a), and a
color-multiplexed illumination stack, as shown in Fig. 6(c), are obtained at each FoV. The images
of these two stacks are one-to-one correspondent.

Fig. 6. Data acquisition, training and defocus prediction. (a) Incoherent illumination stack.
(b) For each image in the incoherent illumination focal stack, Brenner gradient is calculated
to figure out the ground truth focal position (c) In the training process, each image in the
color-multiplexed illumination focal stack is down-sampled and cropped as the input of the
neural network. (d) In the inference process, each color-multiplexed image is employed to
figure out the defocus distance.
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The incoherent illumination stacks are used to determine the ground truth focal position and
the defocus distance of each image. The color-multiplexed illumination stacks are fed into the
convolutional neural network to predict the defocus distance. For each image in incoherent focal
stack, we calculate the Brenner gradient and consider the position where the brightfield image
having the largest Brenner gradient as the ground truth focal position, as shown in Fig. 6(b) and
Eq. (4) [22].

IndexBre_max = arg max
0<i<N

(Brenner(Bi)) (4)

where N is the number of images in a stack, Bi represents the ith image of the brightfield image
stack. Then the defocus distance of each image in incoherent illumination stack can be obtained
according to the step size and the index difference from in-focus position:

Defocus(Bi) = Szpl · (i − IndexBre_max), (1<i<N) (5)

where Szpl represents the step size of photographic lens adjustment during image acquisition.
In this paper, we adjust the focal position with 0.673 µm step size with the 1.34 µm DOF.
Consequently, regarding the position of image with largest Brenner gradient as ground truth
focal position will not cause substantially large deviation. In the case of a large training set,
this deviation will be neutralized. After the ground truth focal position is acquired, the defocus
distance of each image in the incoherent illumination stack is obtained. Then, the defocus distance
of each image in the partial coherent illumination stacks is also known because of the one-to-one
correspondence.

In training process shown in Fig. 6(c), we crop each color-multiplexed illumination image into
512 × 512 tiles, and use the red and green channels as the input of the network. We remove
the blue channel to avoid the redundant information of color crosstalk, which may affect the
accuracy of prediction. During inference process shown in Fig. 6(d), we split the acquired
color-multiplexed image into 12 non-overlapping 512× 512 sub-images. The 12 sub-images are
put into the trained network as a batch to get 12 outputs. We remove the largest two and the
smallest two of the 12 outputs and take the average as the final defocus distance.

The machine used for training the network is equipped with an Intel Xeon E5-2650 processor,
a RTX 2080Ti graphic card and runs on ubuntu 16.06. We set the learning rate to 0.001 in the
first 40 epochs, and then the learning rate drops to 90 percent after each epoch in the next 30
epochs. The model after each epoch will be used to test the accuracy on the validation set and we
will update the saved model parameters when the accuracy improves. If there is no improvement
on accuracy on validation set for 4 epochs, training will be terminated early. We take MSELoss
as the loss function, as shown in Eq. (6).

MSELoss(yi, ȳi) = (yi − ȳi)
2 (6)

where i refers to the ith index of the input images, ȳi refers to the output, yi refers to the actual
defocus distance.

3. Experimental results

3.1. Dataset

We obtained 112 pathological slides of different types, including hematoxylin-eosin (HE) stained
cell slides, HE stained tissue slides, HE stained mouse myocardial tissue slides, HE stained
human bacterial myocarditis tissue slides, and hematoxylin-stained human myocarditis tissue
slides.

We capture stacks by the proposed hardware system with a 20X Olympus objective lens and a
20-megapixel camera. For each FoV, 33 images under color-multiplexed illumination and 33
images under incoherent illumination are captured with defocus distance varying from -160 to
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160 lens ring position with a step size of 10 lens ring position, equivalent to ∼0.637 µm. For
real-time focusing strategy, the in-focus position between two adjacent tiles is no more than 10
µm, so the -160 to 160 lens ring position range is sufficient for the reported system. A total
number of 23,171 20-megapixel images are available for training. The data is split into a 19, 695
training set and a 3, 476 validation set. Testing set consists of 6158 20-megapixel images, which
can be divided into two categories based on whether the sample type appearing in the training set.

3.2. Performance on test set

We validate our method by comparing with mutual information (MI) maximization algorithm.
MI has been widely used for nonrigid multimodality image registration. MI measures how
much information one random variable contains about the other random variable. A significant
advantage of this algorithm is its capability of dealing with images that is not quite analogical
[21]. If X and Y are the random variables which represent the intensities of two images, the MI
I(X, Y) between two images is given by:

I(X, Y) = H(X) + H(Y) − H(X, Y) (7)

where I(X, Y) is the mutual information of X and Y, H(X) and H(Y) represent the entropy of X
and Y respectively, H(X, Y) is the joint entropy of X and Y. S. Jiang proposed to calculate the
displacement between the red channel and green channel with subpixel resolution by maximizing
mutual information [21]. The displacement is proportional to the defocus distance of the sample.

The samples in the test set can be divided into three categories: cell samples, human tissue
samples and mouse myocardial samples. Figure 7(a) shows the pixel shift calculated by MI
maximization algorithm. For most samples, pixel shift being near the fitted curve shows that
MI maximization algorithm can be used to calculate the pixel shift. Then, the defocus distance
can be figured out because of the linear relationship between defocus distance and pixel shift.
Our method is applied to the test set and the corresponding focusing error is shown in Fig. 7(b).
The mean focusing error is approximately 0.31 µm, which is well within the ±1.34 µm DOF,
indicating that our method has a high accuracy in figuring out the defocus distance based on the
single-shot color-multiplexed illumination image. We recorded the lens ring position during
image acquisition and use the units of lens ring position to measure the amount of defocus. In
order to better illustrate the accuracy of defocus prediction, we convert the lens ring position to Z
position of objective lens through the calibrated proportional relationship shown in Fig. 1(e).

Fig. 7. Comparison of MI maximization and the proposed method. (a) Pixel shift calculated
by MI maximization algorithm. (b) The focusing errors with the proposed method. (c)
Defocus direction prediction with the proposed method.

In the actual image acquisition process, it is important to ensure the accuracy of the defocus
direction prediction. If the defocus direction is predicted incorrectly, the quality of the captured
image will be very poor. What is more serious, if the defocus distance exceeds the working
range of focusing algorithm due to the incorrect prediction of the defocus direction, the system
cannot complete the subsequent acquisition work. In our method, defocus direction is directly
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encoded in the acquired image under color-multiplexed illumination. Figure 7(c) shows the
defocus direction judgement for test tiles, indicating that our method excels in defocus direction
judgement with a single-shot image. The vertical axis of Fig. 7(c) is the actual defocus distance,
which is within about ±10 µm defocus range (±160 lens ring position). The green dots indicate
the correct defocus direction prediction tiles while the red triangles indicate the incorrect defocus
direction prediction tiles. In the range out of the DOF, the proposed method predicts the defocus
direction completely correct over the testing set. This is partly attributed to the color-multiplexed
illumination method, which enables the images captured contain clear information about defocus
direction.

3.3. Robustness to under-stained and thick samples

Another advantage of our method is the robustness against under-stained samples and thick
samples. Typical FoVs of these two types are shown in Fig. 8(a) and Fig. 8(b). As shown in
Fig. 8(c) for under-stained samples and Fig. 8(d) for thick samples, the pixel shift calculated by
MI maximization algorithm deviates from the fitted curve shown in Fig. 7(a), indicating that
the defocus distance cannot be figured out accurately. It may due to the insufficient lack and
mutual influence of information between neighboring pixels for these two types of samples. The
focusing errors of the proposed method are demonstrated in Fig. 8(e). The mean focusing errors
are 0.34 µm and 0.33 µm, which are well fallen within the DOF, indicating the robustness of our
method.

Fig. 8. Comparison of MI maximization algorithm and proposed method for under-stained
samples and thick samples. (a) FoV of under-stained sample. (b) FoV of thick sample. (c)
(d) Pixel shift calculated by mutual information maximization algorithm. (e) Focusing error
with the proposed method.

3.4. Generalization ability

The generalization of neural networks has always been the focus of attention. In order to verify
the generalization of the network trained in this paper, we tested the performance of our method
using two sample types that have never appeared in the training set as a new test set and tested
the performance of the proposed method.
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The focusing errors for different tiles are shown in Fig. 9(a), and the mean focusing errors
are about 0.55 µm and 0.65 µm, respectively. The focusing error is still fallen within the DOF
range, indicating that the trained model has good generalization ability. Typical FoV pictures of
these two new types are shown in Fig. 9(b). The two types of samples have different texture and
staining conditions, which further illustrates the robustness of our method.

Fig. 9. (a) The focusing errors with the proposed method for two new types of pathological
slides, which did not appear in the training set. (b) Autofocused images of the two new types
of samples.

3.5. Time complexity analysis

In the process of acquiring a full-slice image, the time used for defocus calculation is an important
indicator for evaluating a defocus calculation method. We tested time expenditure of our algorithm
over a desktop with Intel i7-10700 processor, 32GB RAM, NVIDIA RTX2080Ti with 12G GPU
memory. Results of processing time are shown in Fig. 10(a) and summarized in Fig. 10(b). In our
setup, three steps are required to calculate the defocus distance of an image. First, the image needs
to be converted into tensor format that can be calculated by the network and then is normalized.
The time required for this process is 0.0628± 0.0026s. Then, the red and green channels of the
image are divided into 12 non-overlapping sub-images. This step requires 0.0050± 0.0006s.
Figuring out the defocus distance based on the 12 sub-images requires 0.0117± 0.0012s. Total
time expenditure to calculate the defocus distance of an image is 0.085± 0.0027s. Obviously,
the approach proposed can calculate the defocus distance within a short time, showing great
application value. For the image acquisition of each FoV, we set a time delay of 0.3s for x-y stage
movement, and 0.1s delay for focal plane adjustment. The total processing time for each FoV is
about 0.5s.

Fig. 10. Time expenditures to predict defocus distance.

3.6. Whole slide image capturing

Figure 11 shows a whole slide image captured with the reported system. The focus map (converted
from lens ring position) is shown in Fig. 11(a), the depth information of each FoV is recorded
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during the image acquisition process. The whole slide image, as is shown in Fig. 11(b), is
generated using the image stitching plug-in of imageJ. We apply linear blending in the overlapping
regions. The acquisition time for this 1 cm by 1 cm sample image is ∼56 s.

Fig. 11. (a) Focus map generated during image acquisition. (b) The captured whole slide
image.

4. Conclusion

In summary, we reported a low-cost WSI scheme using deep learning based autofocusing.
In hardware implementation, we use a customized adapter ring to connect the photographic
lens and realizes precise control instead of using a precise mechanical stage for axial focusing
adjustment. Compared with the invasive method to connect to the photographic lens, the proposed
connection method provides a cheap and convenient solution for subsequent researches. We use
a programmable LED array for sample illumination, which provides two illumination modes,
brightfield illumination and partial coherent illumination. The adaption of our illumination
equipment to traditional microscopy system is very convenient. In each FoV, we acquire a
color-multiplexed illumination image for autofocusing before capturing the brightfield image. A
neural network is further proposed to predict the defocus distance. Experimental result shows that
the focusing error is well within the DOF, and our method is more robust against under-stained
samples and thick samples. Moreover, the defocus distance can be accurately calculated for the
sample types that have never appeared in the training set, indicating that our method has good
generalization ability. Thanks to the ‘light weight’ network architecture, the processing time of
autofocusing is extremely short. In the case of using GPU, the calculation time is less than 0.1
second, which shows the great potential for rapid high-throughput whole slide imaging.

Future work includes adding more types of samples in dataset to improve stability. We will
also explore better network structures to further improve the accuracy of predictions and reduce
the processing time.
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